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C
entile curves, such as for weight and height of
children, plot various percentiles at different
ages. When constructed for healthy children,
these are used as reference for evaluating

growth of children. Main feature of these plots is that
percentiles look like a smooth curve over age. Two major
statistical problems involve into making these curves.
First is to find different percentiles at each age and
second is to achieve smoothness of the percentile curves
over age.

Lambda-Mu-Sigma (LMS) [1] and Box-Cox Power
Exponential (BCPE) [2] are popular methods to obtain
smoothened centile curves, particularly for cross-sectional
data. These are commonly used to obtain percentile curves
for various growth parameters in children such as by
World Health Organization (WHO) Multicentre Growth
Reference Study (MGRS) Group [3] and growth reference
curves for school-aged children and adolescents [4]. The
application extends to any setup where centiles are
estimated for different time points. For example, these
methods have been used to obtain reference values of
differences between TW3-C RUS and TW3-C carpal bone
ages of children in China [5], to obtain centile charts for
placental weight for singleton deliveries in Aberdeen, UK
[6] and for normal values of aortic dimensions,
distensibility, and pulse wave velocity in children and
young adults in Germany [7].

Despite such diverse use, the methods seem to have
never been explained explicitly. Mathematical details have
been provided [2,4] but they seem to be too complex for
medical and health professionals. It is not immediately
clear from these explanations why such complicated

methods are required, which part of the methods is for
centile estimation and which part is for smoothening, and
among smoothening, what is for estimates of parameters
and what for centile curves: WHO report [8] has explained
the essentials but not the details. Because of several
unexplained steps, the application so far has not been
widespread. It been done either by experts who know the
intricacies or by inexperts who use the software as a
blackbox [9].

The purpose of this article is to demystify LMS and
BCPE methods alongwith the methods of smoothing so
that health professionals can use them correctly with a
degree of confidence. However, some finer details such as
intricacies of percentiles beyond 99th and below 1st, and
details of the competing methods have been left out from
the present article so that the article remains short and
intelligible for health professionals. This article also does
not discuss aspects of data collection (age intervals,
longitudinal/cross-sectional), data cleaning and outliers,
sample size, etc. Only the most commonly applicable
statistical methods for cross-sectional data are presented.
For those interested, Borghi et al. [10] have reviewed 30
methods of constructing centile curves.

CENTILE ESTIMATION AT ONE PARTICULAR POINT IN

TIME

Restrict for the time being to a specific time point, denoted
by t, say age 4 years so that t = 4. A sample of subjects is
measured for an outcome variable such as weight at that
age. Since weight is the most common of such variables,
most of the intricacies are explained using this as an
example. Denote this outcome variable by y.
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Non-Gaussian distribution

Fundamental quantity in centile estimation is the z-score.
This is obtained as the deviation from a central value such
as mean or median in standard deviation (SD) units [z = (y
– mean)/SD]. Interpretation of these z-scores is straight
forward in terms of percentiles when the y-values follow
an exact Gaussian distribution. For example, z = 1.96
corresponds to 97.5th percentile and z = 1.28 to 90th

percentile of a Gaussian distribution. Software gives
these percentiles easily for any value of z. The problem
starts when the distribution of the response variable y is
not Gaussian.

For a Gaussian distribution, the frequency curve
should be unimodal, symmetrical (i.e., skewness = 0) and
with normal peak (kurtosis = 0). Departures can be in terms
of negative or positive skewness  or in terms of too sharp
(kurtosis < 0) or too flat peak (kurtosis > 0). Mild departures
from Gaussian pattern do not matter as they may be within
sampling fluctuations but it is hard to say what departures
are mild. Graphical and computational methods such as Q-
Q plot, box plot, and Shapiro-Wilks test have been
described to check Gaussianity [9]. Tests for skewness
(Sk) and for kurtosis (Kurt) are also applied for centile
estimation. For skewness, generally |Sk| > 0.5 is considered
high. Else, calculate z = |Sk|/[SE(Sk)] and reject the null of
Sk = 0 if this z > 2:  SE(Sk) = √(6/n) for large n.  Similarly,
|Kurt| > 1.0 is considered high, else reject null of Kurt = 0 if z
=   |Kurt|/SE(kurt) >2; SE(Kurt) =  √(24/n) for large n.

Fig. 1 shows the distribution of weight of 272 children
(assume girls for our purpose) of age 48 months (±3
months) in Nepal as found in 2011 Demographic Health

Survey [11]. I have changed a few values to illustrate the
method. It looks from Fig. 1 that the distribution is
approximately Gaussian but that really is not so. While
skewness can be “seen”, kurtosis is not easy to decipher.
Carefully note for our data that weights between 12.0 kg
and 14.0 kg are more common than expected under
Gaussian distribution (Fig. 1), indicating a flatter peak.
Also the weights in right half of the plot have slower
decline and this tail is longer compared with the left tail.
This indicates positive skewness. This is the kind of
pattern generally followed by weight in children. The
descriptive statistics for this dataset (Table I) show that
the distribution is positively skewed with Sk = +0.654;
statistical software calculated this easily. This Sk is > 0.5.
Otherwise too, z = Sk/[SE(Sk)], = 0.654/0.148, which is >2
and you can reject the null of  Sk = 0.  Similarly, Kurt = 1.043,
which also is statistically significant since SE(Kurt) = 0.294
for these values (Table I). This all suggests that the
distribution is not Gaussian.

When the distribution is skewed and kurtotic, z-scores
do not have a valid interpretation. Thus we need to
transform the distribution to (Gaussian or approximately
so) before z-scores can be correctly used. Here in comes
the role of LMS and BCPE methods.

LMS Method

LMS method is primarily for correcting skewness. It does
not handle kurtosis. BCPE method, described later,
handles both skewness and kurtosis. Thus use LMS
method to find z-scores when the distribution is skewed
but have ‘normal’ peakedness and use BCPE method
when z-scores are to be corrected for non-normal
peakedness also.

FIG. 1 Weight distribution of 4-year old girls with corresponding
Gaussian distribution superimposed.

TABLE I DESCRIPTIVE STATISTICS FOR THE DATASET OF WEIGHT

(KG) OF 4-YEAR-OLD Girls (N = 272)

Parameter Value

Mean 13.41

Median 13.35

Mode 13.60

Standard deviation 1.82

Variance 3.324

Skewness 0.654

Standard  error of skewness 0.148

Kurtosis 1.043

Standard  error of kurtosis 0.294

Range 10.9

Minimum 9.6

Maximum 20.5
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Square-root transformation tends to correct mild
positive skewness. This transformation shrinks the y-
values but important is that higher values shrink more than
lower values. In terms of power of y square-root is y0.5.
When applied to the distribution in Fig. 1, the net effect
will be that right skewness will considerably reduce, may
even vanish. On the other hand, if the distribution is
negatively skewed with longer left tail, the transformation
y2.0 will do just the reverse. It will stretch right tail much
more than left tail – thereby tends to correct left skewness.
Both these transformations are of the type yλ. This is called
power transformation and is a potent tool to correct
skewness.  The value of power λ depends on the type of
skewness and the extent of skewness. In our data,
skewness is 0.654 (Table I) and λ is to be chosen
accordingly as per the procedure explained later in this
article.

Now introduce another transformation. Divide each y
by its central value μ and calculate y/μ. This central value
could be mean or median or any other value. Since mean is
not a good representative central value in case of skewed
distribution, other options remain for exploration. For
example, in our weight data of 4-year olds, mode is 13.6 kg
(Table I). If we divide each weight by this, values less than
13.6 will become less than 1.0 and values more than 13.6
would become more than 1.0. Now the transformation
makes more sense. Now the square-root transformation is
(y/μ)0.5 and square transformation is (y/μ)2. In general, the
power transformation is (y/μ)λ. λ >1 is for correcting left
skewness and λ <1 for right skewness. If the distribution is
already Gaussian, no correction is required, and then λ = 1.

LMS method [12] uses the following transformation,
which is an extended form of power transformation
discussed in the preceding paragraph:

(A) zLMS = 
1

1
L

y


  

  
  

   
for y, μ, σL and λ≠0,

where σL is a measure of dispersion as shortly explained.
This transformation is called reparametrization. The
original measurements such as weight in our example may
have any skewed distribution with single mode, the
distribution of zLMS with this transformation will be
standard normal and this will give the correct z-score for
calculating the percentile provided the kurtosis is already
zero. Note the involvement of lambda (λ), mu (μ), and
sigma (σL), making it a LMS method. The rationale of (y/μ)λ

is already explained and σL is in the denominator just as is
σ in z = (y – μ)/σ. But in LMS, σL is the coefficient of
variation σ/μ. Note that when σL = σ/μ, and λ = 1, equation

(A) reduces the usual z-score (y –μ)/σ.

For λ = 0, zLMS in equation (A) becomes indeterminate
0/0 and is replaced by its mathematically equivalent [(1/
σL)*ln(y/μ)]. In this case, this becomes log transformation.
Negative values of y or μ can make y/μ negative whose
root (such as square-root) does not exist. All medical
parameters of the type we are discussing have positive
values. For example, weight can never be negative. For
something like change from pre- to post-treatment or
difference between, say, right and left measurements,
which could be negative, this transformation would work
only after adding slightly more than the minimum
difference. If minimum difference is –3, add 3.1 to all the
differences, and then use this method.

Now comes the first difficult part. How to estimate the
values of λ, μ, σL? Explicit forms for estimating these
parameters do not exist. Special software is used to find
those values of these parameters that maximize the
likelihood of the transformed values of the sample to have
come from a standard Gaussian distribution with mean = 0,
SD = 1, and skewness = 0. This is called the method of
maximum likelihood. For example, for our data depicted in
Fig. 1, software will find those values of  λ, μ, σL that make
the distribution of zLMS closest to standard normal.

If we assume for our weight data that such estimates
are μ = 13.6, σ = 2.0 (so that σL = 2.0/13.6 = 0.147), and λ=
0.30, zLMS for a child with weight y = 15.0 kg is

zLMS = 
0 .3 0

1 1 5 .0
1

0 .1 4 7 0 .3 0 1 3 .6

         
= 0.0298/0.0441 = 0.6757,

and the corresponding percentile from Gaussian table is
75. Thus this child’s weight is better than 75% children in
this population. Instead of LMS, usual z-score, which is
uncorrected for skewness, is (15.0 – 13.41)/1.82 = 0.874,
where mean and SD are from Table 1. This value of z
corresponds to 81st percentile. Note how z-scores with no
correction and LMS correction give very different values
of percentile for the same child. This is because of
skewness in the data.

There is a mathematical relationship between usual z
and LMS percentile:

(B)   pth percentile = μ(1 +λσLzp)1/λ,

where zp is the usual value from Gaussian table
corresponding to pth percentile. For example, for 75th

percentile, zp = 0.675 from Gaussian table. Thus, 75th LMS
percentile = 13.6×(1 + 0.30×0.147×0.675)1/0.30 = 13.6×1.103
= 15.0. We have just shown that weight = 15.0 kg is at 75th

percentile. Inverse calculation also reveals the same.
Once estimates of l, μ, sL are obtained, equation (B)
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shows that it is very easy to calculate percentiles at any
particular age for a skewed distribution. LMSchartmaker
(Medical Research Council, UK) is the software of choice
for this purpose.

BCPE method

Now consider a distribution of y that has positive or
negative kurtosis. Weight distribution of 272 girls in Fig.
1 has kurtosis = 1.043. This was shown earlier to be
statistically significant. Because of high kurtosis, zLMS
will undesirably give high or low z-score. Thus it is
necessary to model kurtosis as well. For this, additional
adjustment is needed. This adjustment is not in terms of a
new transformation but is in terms of considering that
distribution of zLMS is not standard Gaussian but another
complex looking distribution called BCPE distribution
(BCPE). This is where BCPE comes in. Beside λ, μ, σ, this
distribution has another parameter denoted by τ.
However, now skewness parameter λ is denoted by ν  as λ
would be the notation for power transformation of t-
variable. Note that λ earlier used for age transformation is
different from λ now being used for measurement
transformation. BCPE distribution reduces to LMS when τ
= 2. Thus LMS method is a special case of BCPE method.
One might just as well straight try to use BCPE method.
This will give τ ≈ 2 if the kurtosis is already zero. Again,
the values of μ, σ, ν and τ are estimated with the help of
special software. This is also called LMSP method.

pth percentile for BCPE distribution is obtained by
using an inverse function but it does not have an explicit
expression of the type we have in equation (B) for LMS
method. Software help will be required. The details are
given elsewhere [2].

CENTILE CURVE OVER A PERIOD OF TIME

The discussion so far is for centile estimation at one
particular value of t-variable such as age = 4 years. For
centile curves, this estimation is done for many points in
time. For example, for weight curve, one would obtain,
say, 97.5th percentile for age 1 year, age 2 years, age 3
years, etc., to able to obtain centile curve. It is fair to
expect that these percentiles at different ages would
follow some kind of smooth trend. But, unfortunately, that
would not be so, mostly due to sampling fluctuations.
Real statistical problem starts from here. These
percentiles would, in all probability follow an irregular
pattern as are BCPE based hypothetical estimates in Fig.
2.  These are 95th percentile of aortic cross-sectional areas
at ascending aorta at different ages, similar to those
obtained by Voges, et al. [7].  It would be unrealistic that
one age gives a high area and the next a relatively a low
area unless there is a biological explanation. Extracting a
realistic trend from erratic values is a great statistical
challenge.

 Eyeball trend can be fitted but that lacks scientific
basis and could vary from person to person. Shown in the
Fig.2 are observed values by solid line, linear trend by
dashed line, polynomial of degree 4 by dotted and
polynomial of degree 2 by spaced dashes. The difficulty is
to ascertain that flattening at 15 years in Fig. 2 is real (does
the aorta area really increases slowly between age 10 and
15 years?) or that is just because of sampling fluctuation –
another sample may not give this trend. If this flattening is
genuine and we ignore this in our trend, important
information regarding a slow down just before age 15
years is lost. For delineating norms, no genuine
information can be sacrificed. Also, a similar slow-down is
noted after age 25 years. None of the four trends in Fig. 2
seems adequate to provide a real picture. Biological
knowledge suggests that the aorta area increases rapidly
till age 20 or 25 years and then the increase slows down,
particularly in those who have relatively large area for their
age (say, those on 95th percentile). Thus a flattening
between 25 and 30 years seems real but not between age 10
and 15 years. This is resolved by smoothing.

However the first step is resolving an entirely different
problem that relates to the t-variable such as age.
Smoothing of centile curves will be taken up in steps 2
and 3.

Step 1. Age transformation

Almost all growth parameters (height, weight, chest
circumference, etc.) increase much more rapidly in first
few months of life compared with the later ages (Fig. 3,
left panel). Whatever smoothing is done, if it works well

FIG. 2 Trend of 95
th
 percentile of aortic cross-sectional areas at

ascending aorta at different ages
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for early age, it tends to distort trend in later ages, and if it
works well for later ages, it may distort trend in early age.
To overcome this problem, age (or whatever is t-variable)
is transformed before exercise on smoothing of centile
curve is undertaken. Steeper curve at the beginning of life
suggests that a transformation of the type tλ will have an
assuaging effect. In right panel of Fig. 3  is the same
curve but age is now scaled to age0.6 so that λ = 0.6 in this
case. Convention is to try all values of λ between –1 and 2
at an interval 0.25 (i.e., –1, –0.75, …, 0, 0.25, 0.50, …, 1.75,
2.00), and choose that value which transforms the
relationship to nearly linear.  When relevant software is
available, this is not a difficult exercise. Call this λ0. This
would be the initial value and refined later as shortly
explained.

Step 2. Smoothing of L, M, S, and P curves

Trend finding inherently ignores some dips and bumps.
We wish to consider these because they could be real.
Thus, in this case, we use the term smoothing in place of
trend. Smoothing tries to retain the short-term increasing
and decreasing trends (ups and downs) as they could be
real biological features.

Direct smoothing of centile curves can be done but
this may not work well because smoothing each centile
curve separately may not synchronize with each other. For
example, 50th percentile curve may show faster rise and 95th

could be rather flat, and this could give inconsistent
results.  Thus a longer but more appropriate route is
adopted. This involves smoothing the estimates of LMSP
(μ, σ, ν, τ ) parameters. Along with λ for time points, the
model is called BCPE(μ, σ, ν, τ, λ). Note that first four
parameters in this pertain to the variable y such as weight
whereas the fifth pertains to t-variable such as age.

Best estimate of each of μ, σ, ν,  and τ for each time
point are obtained from the procedure outlined in the
previous section. These estimates can be plotted versus
time. Thus there is one μ-plot, one σ-plot, one ν-plot and
one τ-plot.  Sometimes they are referred to as L-plot, M-
plot, S-plot and P-plot, although not in this sequence. As
in the case of percentiles, these plots will be irregular (see

Fig. 4 for ν-plot for 1-month weight velocity). For
smoothing these plots as curves, Cole and Green [2]
suggested a method of penalized likelihood estimation,
which incidentally leads to natural cubic splines with
knots (also called control points) at each distinct value of
t. In fact both penalized likelihood and cubic splines are
equivalent methods.

For implementing the method just mentioned, most
researchers now use software called Generalized Additive
Model for Location, Scale and Shape (GAMLSS) [13]. The
procedure requires estimating parameters of smoothness,
also called effective degrees of freedom (edf). For example,
edf = 1 means just a point, edf = 2 means that the curve is
smoothed as a straight line, edf = 3 means that the curve is
smoothed almost as a quadratic curve and edf = 4 means
that the curve is smoothed as nearly a cubic polynomial.
These edfs will be used to get the estimates of the
parameters μ, σ, ν, τ  at different ages. Each curve will have
its own edf depending on how many identifiable twists and
turns that curve has over age. These may also differ from
boys to girls in case of growth indicators. These edfs are
also referred to as smoothing parameters and are derived
from penalized maximum likelihood function as stated
earlier, using GAMLSS software.

Since higher edfs give increasingly complex curve,
smoothing will not be so smooth if the higher edfs are
used. The objective is to find least edf that will still provide
a good fit to the observed trend of L, M, S, and P values
over time points. Balancing the smoothness and goodness
of fit is ultimately the researcher’s call but one can take help
of a goodness of fit index such as Generalized Akaike
Information Criterion (GAIC). In this case, this takes the

FIG. 4 Fitting of n-curve for selected model for 1-month weight
velocity for boys (Dotted is the fitted curve and solid lines
are the estimated values of n at different ages) (Source:
WHO report [8], page 36)FIG. 3 Effect of age transformation on centile curve.
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form GAIC(3) = –2L + 3p where L is the log-likelihood and p
is the total of all edfs + 1 for estimating parameter λ. This 3p
represents the penalty on the likelihood for achieving
greater smoothness. Smaller is the value of this criterion,
better is the fit. Experience suggests that this penalty of 3p
works better (in the sense of providing smoother curves)
than any other penalty for estimating these edfs. If you
find ν  = 1 and/or τ  = 2, you can keep them fixed.

GAMLSS uses iteration method and needs to start
from some assumed values of μ, σ,  τ , ν, and λ. Note that it
includes λ whose initial value is λ0 as obtained earlier. An
automatic procedure is available in GAMLSS that uses
these starting values and provides optimal values of
edf(μ), edf(σ), edf(ν ), and edf(τ ), which minimize GAIC(3)
[2]. Start can be with any appropriate looking values but it
is advisable to try out low, medium and high starting values
(except for λ since the initial value of this is λ0) to achieve
global minimum of GAIC(3) [2]. Alternatively, option is
available in the software that would choose the starting
values also for you.

For example, the specifications of the BCPE models
that provided the best fit to generate the growth curves of
school children and adolescents in the US were as follows
[4]. For height-for-age: BCPE(λ = 1, df(μ) = 12, df(σ) = 4, ν =
1, τ = 2) for boys; and BCPE(λ = 0.85, df(μ) = 10, df(σ) = 4, ν=
1, τ = 2) for girls. For weight-for-age: BCPE(λ = 1.4, df(μ) =
10, df(σ) = 8, df(ν) = 5, τ = 2) for boys; and BCPE(λ = 1.3,
df(μ) = 10, df(σ) = 3, df(τ) = 3, τ = 2) for girls. As stated
earlier, df(μ) is the effective degrees of freedom (although
prefix e is dropped in these expressions) for the cubic
splines fitting the median (μ); df(σ) the degrees of freedom
for the cubic splines fitting the coefficient of variation (σ);
df(μ) the degrees of freedom for the cubic splines fitting
the Box-Cox transformation power (ν) (for height-for-age
fixed ν  = 1); and τ  is the parameter related to the kurtosis (in
both the cases fixed τ  = 2) [4] .

There is a word of caution, though. Cubic splines use
the values at both the sides of knots—if t is the knot,
values before t and values after t are used. Thus the
method of penalized likelihood estimation, since based on
cubic splines, is weak at the two ends of the series as only
half the information is available—only the past for highest
end-point and only the future for the lowest end-point. For
example, if the highest age under observation is 14 years,
the estimates of various edfs will work well for upto the age
of 13 years.

Step 3. Testing the goodness of fit of the final curves

Step 2 will provide ‘best’ estimate of edfs. Use these to
plot LMSP curves versus age and find the values of
estimated μ, σ,  ν, τ, and λ at each age of interest – estimate

of  μ at each age from μ-curve, estimate of σ  at each age
from σ-curve, etc. Use these age-specific estimates to find
different percentiles at each age using BCPE distribution.

Final step is to check the fitting of the centile values
with the observed data since curves so arrived may still be
far from the observed values. For this, Q-test [14] is used.
This combines overall and local tests assessing
departures from the normal distribution with respect to
median, variance, skewness and kurtosis. This involves
calculating z-scores at each age and then for all ages
combined separately for each parameter (μ, σ, ν, τ, and λ).
Absolute z-value larger than 2 at any age indicates lack of
fit. Other goodness of fit tests for age-related reference
ranges and their comparison are reported elsewhere [15].

Interpretation of Q-test results requires considering
shape of worm plots [16] but let us not go into that
complexity. In case of lack of fit, recalibrate values of μ, σ,
ν, τ, and λ. This is called fine tuning. This involves going
back to the GAMLSS software and use the latest available
estimates of μ, σ, ν, τ, and λ as inputs and find new
estimates. Many times no improvement will occur.

It should be clear from this description that both LMS
method and BCPE method are calculation intensive and
can not be used without the help of appropriate software.
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